I ROJECT MANAGEMENT & OF HIMIZATION									
Course Code	19ME2701B	Year	IV	Semester	Ι				
Course Category:	Inter Disciplinary Elective	Branch	ME	Course Type	Theory				
Credits:	3	L - T - P	3 - 0 - 0	Prerequisites:	Nil				
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100				

PROJECT MANAGEMENT & OPTIMIZATION

Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to			
CO1	Explain basics of project management	L2		
CO2	Analyze activities involved in project.	L3		
CO3	CO3 Describe various project cost management techniques			
CO4	Apply various Linear programming techniques and sequencing methods	L3		
CO5	select transportation and assignment technique to minimize the cost	L3		

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L:Low)											&		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3			2		2			3	2	2	3
CO2	2	2	3	2	2				2		3	2	2	3
CO3	2	2	3			3		2			3	2	2	3
CO4	2	2	3			3		2			3	2	2	3
CO5	2	2	3			3		2			3	2	2	3

Syllabus						
Unit No	Contents					
		CO				
	Concepts of project management: Meaning, definition and characteristics of					
	a project, technical and socio-cultural dimensions; project life cycle phases,					
Unit-I	project planning, graphical representation of project;	CO1				
Unit-1	work breakdown structure; size of network; blow down NW; dummy activity in	COI				
	a NW; Fulkerson rule for numbering NW; Rules for drawing NW.					
	NW analysis: Network modelling, Probabilistic model-various types of activity					
Unit-II	times estimation, programme evaluation review techniques (PERT), probability	CO1				
	of completing the project, deterministic model- critical path method (CPM),	CO2				
	critical path calculation, crashing of simple of networks.					
	Project duration and control: Importance and options to accelerate project					
	completion; time cost trade off; fixed variable and total costs; project					
	performance measures; project control process; cost-schedule, S- graph;					
Unit-III	planned cost of work schedule (PV), budgeted/ earned cost of work completed					
01111-111	(EV) and actual cost of work completed (AC); schedule and cost variances (SV,					
	CV) forecasting final project costs.					

Unit-IV	LINEAR PROGRAMMING: Linear Programming Problem Formulation, Graphical solution, Simplex method, Artificial variables techniques-Two–phase method, Big-M method, Duality Principle SEQUENCING: Introduction, sequencing of n jobs through two machines, n jobs through three machines –two jobs through 'm' machines	CO4
Unit-V	TRANSPORTATION PROBLEM: Formulation, Basic Feasible Solution, Optimal solution, U-V method, unbalanced transportation problems, Degeneracy. ASSIGNMENT PROBLEM: Formulation, Optimal solution, Variants of Assignment Problem-Traveling Salesman problem.	CO5

Learning Resource Text books: 1. Prasanna Chandra, Projects Planning, Implementation and Control, Tata McGraw Hill Publishing Company Limited, New Delhi, 1995. 2. Operations Research, by S.D.Sharma, Kedarnath & Ramnath publications (15th edition),2013 Reference books 1. Project Management Institute (PMI), A Guide to the Project Management of Knowledge Newton Square, PA, 1996 2. J.R. Meredith and S.J. Mantel, Project Management: A Managerial Approach. John Wiley and Sons, New York, 1995. 3. L.S. Srinath, PERT & CPM Principles & Applications, 3rd edition, East west Press,2001. 4. Operations Research, (2nd edition) by R.Pannerselvam, 2009,PHI Publications, Noida

1. https://nptel.ac.in/courses/105/106/105106149/

2. https://nptel.ac.in/courses/110/104/110104073/

3. https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-ce06/

4. https://nptel.ac.in/courses/112/106/112106134/